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EXERCISES

6.1 [12] Find the inertia tensor of a right cylinder of homogeneous density with
respect to a frame with origin at the center of mass of the body.

6.2 [32] Construct the dynamic equations for the two-link manipulator in Section 6.7
when each link is modeled as a rectangular solid of homogeneous density. Each
link has dimensions /;, w;, and h; and total mass m,.

6.3 [43] Construct the dynamic equations for the three-link manipulator of Chapter 3,
Exercise 3.3. Consider each link to be a rectangular solid of homogeneous density
with dimensions /;, w;, and h; and total mass m;.

6.4 [13] Write the set of equations that correspond to (6.46)—(6.53) for the case where
the mechanism could have sliding joints.

6.5 [30] Construct the dynamic equations for the two-link nonplanar manipulator
shown in Fig. 6.8. Assume that all the mass of the links can be considered as a
point mass located at the distal (outermost) end of the link. The mass values are
my and m,, and the link lengths are /; and /,. This manipulator is like the first two
links of the arm in Exercise 3.3. Assume further that viscous friction is acting at
each joint, with coefficients vy and v,.

6.6 [32] Derive the Cartesian space form of the dynamics for the two-link planar
manipulator of Section 6.7 in terms of the base frame. Hint: See Example 6.5, but
use the Jacobian written in the base frame.

FIGURE 6.8: Two-link nonplanar manipulator with point masses at distal ends of links.
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(18] How many memory locations would be required to store the dynamic
equations of a general three-link manipulator in a table? Quantize each joint’s
position, velocity, and acceleration into 16 ranges. Make any assumptions needed.
[32] Derive the dynamic equations for the two-link manipulator shown in Fig, 4.6.
Link 1 has an inertia tensor given by
Ixxl 0 0
CGI=| 0 I, O
0 0 I,
Assume that link 2 has all its mass, m,, located at a point at the end-effector.
Assume that gravity is directed downward (opposite Z;).
[37] Derive the dynamic equations for the three-link manipulator with one
prismatic joint shown in Fig. 3.9. Link 1 has an inertia tensor given by
Ixxl 0 0
Gl=| 0 L, O
0 0 I,
Link 2 has point mass m, located at the origin of its link frame. Link 3 has an
inertia tensor given by

Ixx3 0 0
Cl=| 0 I,; 0
0 0 I,

Assume that gravity is directed opposite 21 and that viscous friction of magnitude
v; is active at each joint.

[35] Derive the dynamic equations in Cartesian space for the manipulator of
Exercise 6.8. Write the equations in frame {2).

[20] A certain one-link manipulator has
Ixxl 0 0
Cil=| 0 I, O
0 0 I,

Assume that this is just the inertia of the link itself. If the motor armature has a
moment of inertia /,, and the gear ratio is 100, what is the total inertia as seen
from the motor shaft [1]?

[20] The single-degree-of-freedom “manipulator” in Fig. 6.9 has total massm = 1,

with the center of mass at )

1PC= O )
0

and has inertia tensor
100

‘=020
002

From rest at t = 0, the joint angle #; moves in accordance with the time function
0,(t) = bt + ¢t

in radians. Give the angular acceleration of the link and the linear acceleration of
the center of mass in terms of frame {1} as a function of 1.
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FIGURE 6.9: One-link “manipulator” of Exercise 6.12.

6.13 [40] Construct the Cartesian dynamic equations for the two-link nonplanar
manipulator shown in Fig. 6.8. Assume that all the mass of the links can be
considered as a point mass located at the distal (outermost) end of the link. The
mass values are m; and m,, and the link lengths are /; and ,. This manipulator is
like the first two links of the arm in Exercise 3.3. Also assume that viscous friction
is acting at each joint with coefficients v; and v,. Write the Cartesian dynamics
in frame {3}, which is located at the tip of the manipulator and has the same
orientation as link frame {2}.

6.14 [18] The following equations were derived for a 2-DOF RP manipulator:

T = ml(df + dz)él + 1712d22§1 + 21712d2d291
+g cos(8;)[my (dy + dyby) +my(dy + dy)]
Ty = rnldzél + mzt.i.z — ’”1‘11‘22 — mzdzéz +my(dy + 1) g sin(6y).
Some of the terms are obviously incorrect. Indicate the incorrect terms.

6.15 [28] Derive the dynamic equations for the RP manipulator of Example 6.5, using
the Newton—Euler procedure instead of the Lagrangian technique.

6.16 [25] Derive the equations of motion for the PR manipulator shown in Fig. 6.10.
Neglect friction, but include gravity. (Here, X, is upward.) The inertia tensors
of the links are diagonal, with moments I, Iy, I, and Iy, 10, 10 The

centers of mass for the links are given by

0
tpe =] 0 |,
L —h
[0
2PC,: 0
" lo

6.17 [40] The velocity-related terms appearing in the manipulator dynamic equation
can be written as a matrix-vector product—that is,

V(©,0)=V (0,0)0,

m
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FIGURE 6.10: PR manipulator of Exercise 6.16.

where the m subscript stands for “matrix form.” Show that an interesting rela-
tionship exists between the time derivative of the manipulator mass matrix and
V,.(-), namely,

M(®) =2V,(0,0) -,

where S is some skew-symmetric matrix.

6.18 [15] Give two properties that any reasonable friction model (i.e.,theterm F(®, ®)
in (6.114)) would possess.

6.19 [28] Do Exercise 6.5, using Lagrange’s equations.

6.20 [28] Derive the dynamic equations of the 2-DOF manipulator of Section 6.7, using
a Lagrangian formulation.

PROGRAMMING EXERCISE (PART 6)

1. Derive the dynamic equations of motion for the three-link manipulator (from
Example 3.3). That is, expand Section 6.7 for the three-link case. The following
numerical values describe the manipulator:

I} =1, = 0.5m,
my = 4.6Kg,
my = 2.3Kg,
m3 = 1.0Kg,

g = 9.8m/s%.

For the first two links, we assume that the mass is all concentrated at the distal end
of the link. For link 3, we assume that the center of mass is located at the origin of
frame {3}—that is, at the proximal end of the link. The inertia tensor for link 3 is

005 0 0
GI={ 0 01 0 |Kgm?

0 0 01
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The vectors that locate each center of mass relative to the respective link frame

are
P, =4L&,
P, = LX,,
*Pc, =0.

2. Write a simulator for the three-link manipulator. A simple Euler-integration
routine is sufficient for performing the numerical integration (as in Section 6.12).
To keep your code modular, it might be helpful to define the routine

Procedure UPDATE(VAR tau: vec3; VAR period: real; VAR
theta, thetadot: vec3);

where “tau” is the torque command to the manipulator (always zero for this
assignment), ‘‘period” is the length of time you wish to advance time (in seconds),
and ‘‘theta” and “‘thetadot” are the state of the manipulator. Theta and thetadot
are updated by “period” seconds each time you call UPDATE. Note that “‘period”
would typically be longer than the integration step size, At, used in the numerical
integration. For example, although the step size for numerical integration might
be 0.001 second, you might wish to print out the manipulator position and velocity
only each 0.1 seconds.

To test your simulation, set the joint-torque commands to zero (for all time) and
perform these tests: '

(a) Set the initial position of the manipulator to

Simulate for a few seconds. Is the motion of the manipulator what you would
expect?
(b) Set the initial position of the manipulator to

Simulate for a few seconds. Is the motion of the manipulator what you would
expect?

(¢) Introduce some viscous friction at each joint of the simulated manipula-
tor—that is, add a term to the dynamics of each joint in the form 7, = vé,
where v = 5.0 newton-meter-seconds for each joint. Repeat test (b) above.
Is the motion what you would expect?

MATLAB EXERCISE 6A

This exercise focuses on the inverse-dynamics analysis (in a resolved-rate control
framework—see MATLAB Exercise 5) for the planar 2-DOF 2R robot. This robot is
the first two R-joints and first two moving links of the planar 3-DOF 3R robot. (See
Figures 3.6 and 3.7; the DH parameters are given in the first two rows of Figure 3.8.)

For the planar 2R robot, calculate the required joint torques (i.e., solve the
inverse-dynamics problem) to provide the commanded motion at every time step in a
resolved-rate control scheme. You can use either numerical Newton—FEuler recursion or
the analytical equations from the results of Exercise 6.2, or both.
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Given: Ly = 1.0m, L, = 0.5 m; Both links are solid steel with mass density

= 7806 kg/m?; both have the width and thickness dimensions w = ¢ = 5 cm. The

revolute joints are assumed to be perfect, connecting the links at their very edges (not
physically possible).

—_ _ 61 _ [0
The initial angles are © = {02] = {gou].

The (constant) commanded Cartesian velocity is X =0 ;] =0 { 095] (m/s).

Simulate motion for 1 sec, with a control time step of 0.01 sec.
Present five plots (each set on a separate graph, please):

1. the two joint angles (degrees) ® = {#; 6,}7 vs. time;

2. the two joint rates (rad/s) © = {6, 6,)7 vs. time;

3. the two joint accelerations (rad/s?) ® = {6, 6,)7 vs. time;

4. the three Cartesian components of %T , X ={x y ¢}T (rad is fine for ¢ so it will
fit) vs. time;

5. the two inverse dynamics joint torques (Nm) T = {r; 7,}7 vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis
names and units.

Perform this simulation twice. The first time, ignore gravity (the motion plane is
normal to the effect of gravity); the second time, consider gravity ¢ in the negative ¥
direction. ~

MATLAB EXERCISE 6B

This exercise focuses on the inverse-dynamics solution for the planar 3-DOF, 3R robot (of
Figures 3.6 and 3.7; the DH parameters are given in Figure 3.8) for a motion snapshot in
time only. The following fixed-length parameters are given: Li=4,L,=3,and Ly =2
(m). For dynamics, we must also be given mass and moment-of-inertia information:
my =20, my =15, m3 =10 (kg), 1,51 = 0.5, I;,, = 0.2, and €1, ,5 = 0.1 (kgm?).
Assume that the CG of each link is in its geometric center. Also, assume that gravity acts
in the —¥ direction in the plane of motion. For this exercise, ignore actuator dynamics
and the joint gearing.

a) Write a MATLAB program to implement the recursive Newton-FEuler inverse-
dynamics solution (i.e., given the commanded motion, calculate the required
driving joint torques) for the following motion snapshot in time:

6, 0] (4 1 . (b 0.5
@= 16 =1200t ©=16,1 =121 (rad9)® = byp =11 ¢ (radis?
2 30° b5 3 4, 1.5

b) Check your results in (a) by means of the Corke MATLAB Robotics Toolbox. Try
functions rne() and gravioad().

MATLAB EXERCISE 6C

This exercise focuses on the forward-dynamics solution for the planar 3-DOF, 3R robot
(parameters from MATLAB Exercise 6B) for motion over time. In this case, ignore
gravity (i.e., assume that gravity acts in a direction normal to the plane of motion). Use
the Corke MATLAB Robotics Toolbox to solve the forward-dynamics problem (ie.,
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given the commanded driving joint torques, calculate the resulting robot motion) for the
following constant joint torques and the given initial joint angles and initial joint rates:

G 20 610 —60°
T=11%¢ =135 (Nm,constant) Oy= {60y = 90°
T3 1 930 30“

. b10 0
Og= 16 =10 (ads)

Perform this simulation for 4 seconds. Try function fdyn().
Present two plots for the resulting robot motion (each set on a separate graph,
please):

1. the three joint angles (degrees) ® = {; 6, 63}7 vs. time;
2. the three joint rates (tad/s) © = {§; 6, 65}7 vs. time.

Carefully label (by hand is fine!) each component on each plot. Also, label the axis
names and units.



